If tanα=1√x(x2+x+1),tanβ=√x√x2+x+1 and tanγ=√x−3+x−2+x−1, where x≠0, then α+β is
A
γ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2γ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−γ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−2γ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aγ We have, tan(α+β)=tanα+tanβ1−tanαtanβ=1√x(x2+x+1)+√x√(x2+x+1)1−1√x(x2+x+1)√x√(x2+x+1)=(1+x)√x2+x+1√x⋅x(x+1)=√x−3+x−2+x−1=tanγ ∴α+β=γ