If tanα=17 and sinβ=1√10where 0<α,β<π2, then 2β is equal to
sinβ=1√10⇒tanβ=13tan2β=2tanβ1−tan2β=2.131−19=34tanα=17tan(α+2β)=tanα+tan2β1−tanαtan2β=17+341−17.34=1 ⇒α+2β=π4⇒2β=π4−α