If tan α=17, tan β=13, then cos 2α is equal to
sin 4β
Given that:
tan α=17, tan β=13cos 2α=1−1491+149=48495049=4850=2425
⇒ cos 2α=2425 . . .(i)
We know that, sin 4β=2 tan 2β1+tan2 2β . . . (ii)
and tan 2β=2 tan β1−tan2β=2×131−19
=2389=2×93×8=34