If tanα=xx+1 and tanβ=12x+1, then α+β is equal to
π4
Given that:
tanα=xx+1 and tanβ=12x+1
Now, tan(α+β)=tanα+tanβ1−tanα+tanβ⇒tan(α+β)=xx+1+12x+11−(xx+1)(x2x+1)⇒tan(α−β)=x(2x+1)+x+1(x+1)(2x+1)−2x⇒tan(α+−β)=2x2+x+x+12x2+2x+x+1−x⇒tan(α+β)=2x2+x+x+12x2+2x+1⇒tan(α+β)=1∴ α+β=π4