If tanα=mm+1,tanβ=12m+1 then α+β is equal to
π3
π4
0
π2
Explanation for the correct option:
Sum of trigonometric ratios:
tanα=mm+1,tanβ=12m+1
tan(α+β)=tan(α)+tan(β)1-tan(α)tan(β)
tanα+β=mm+1+12m+11-mm+112m+1=m2m+1+1m+1m+12m+1m+12m+1-mm+12m+1=2m2+m+m+12m2+m+2m+1-m=2m2+2m+12m2+2m+1=1tanα+β=tanπ4[∵tanπ4=1]∴α+β=π4
Hence, the correct option is (B).