x2+px+q=0
tanα+tanβ=−p
tanαtanβ=q
tan(α+β)=−p1−q=pq−1
∴sin2(α+β)+psin(α+β)cos(α+β)+qcos2(α+β)
cos2(α+β)[tan2(α+β)+ptan(α+β)+q]
=[p2(q−1)2+p2q−1+1]cos2(α+β)
=[p2+p2q−p2+q(q2−2p+1)(q−1)2]cos2(α+β)
=[p2q+q3−2pq+q(q−1)2]cos2(α+β)
=q(p2+q2−2p+1)(q−1)2(q−1)2(p2+q2−2q+1)
=q