If tanα,tanβ satisfy (1) and cosγ,cosδ satisfy (2) then tanαtanβ+cosγ+cosδ can be equal to
5sin2x+3sinxcosx−3cos2x=2⇒3sin2x+2−2cos2x+3sinxcosx−3cos2x=2⇒3sin2x+3inxcosx−3cos2x=0⇒3tan2x+3tanx−5=0⇒tanx=−3±√696
⇒tanα=−3+√696,tanβ=−3−√696
..(1)
sin2x−cos2x=2−sin2x⇒1−cos2x−2cos2x+1=2−2sinxcosx⇒3cos2x−2sinxcosx=0⇒cosx(3cosx−2sinx)=0⇒cosx=0,cosx=±2√13
⇒cosγ=0,cosδ=±2√13 ...(2)
From (1) and (2)
tanα.tanβ+cosγ+cosδ=(−3+√696)(−3−√696)+0±2√13=−53±2√13