If tanα,tanβ,tanγ be the root of at3+bt+c=0, where a,b and cϵR and cϵ≠0. Also tanα+tanβ=λ and α+β=π2 then the value of sin2α is
tanα+tanβ+tanγ=0⇒tanγ=−λ
Also
tanαtanβtanγ=−ca
⇒tanαtanβ=caλ
But
α+β=π2⇒caλ=1⇒λ=ca
∴tanα+tanβ=ca
tanα+1tanα=ca⇒2sin2α=ca
⇒sin2α=2ac