If tan α=x+1,tanβ=x−1. show that 2 cot (α−β)=x2.
We have, tanα=x+1andtanβ=x−1 Now, 2 cot (α−β) = 2tan(α−β)=2tanα−tanβ1+tanαtanβ=2(1+tanαtanβ)tanα−tanβ=2[1+(x+1)(x−1)]x+1−(x−1)=2[1+x2−1]x+1−x+1=2×x22=x2 ∴2cot(α−β)=x2
Hence proved