The correct option is A sinA(1−n)cosA
tan(A+B)=tanA+tanB1−tanAtanB
=tanA+(nsinAcosA1−ncos2A)1−tanA(nsinAcosA1−ncos2A)
=sinAcosA+nsinAcosA1−ncos2A1−sinAcosA(nsinAcosA1−ncos2A)
sinA−ncos2AsinA+nsinAcos2AcosA(1−ncos2A)cosA−ncos2A−nsin2AcosAcosA(1−ncos2A)=sinAcosA(1−ncos2A−nsin2A)
⇒sinAcosA(1−n(sin2A+cos2A))
⇒sinAcosA(1−n)