If tanβ=3tanα, then(α+β)=
Consider given the function
If tanβ=3tanα,then(α+β)=
We know that
tan(α+β)=tanα+tanβ1−tanαtanβ
=tanβ3+tanβ1−tanβ3tanβ
=4tanβ33−tan2β3
=4tanβ3−tan2β
=4sinβcosβ3−sin2βcos2β
=4sinβcosβ3cos2β−sin2βcos2β
=4sinβcosβ3cos2β−(1−cos2β)
=2sin2β3cos2β−1+cos2β
=2sin2β4cos2β−1−2+2
=2sin2β2(2cos2β−1)+1
=2sin2β2cos2β+1
=2sin2β1+2cos2β
Hence, this is the answer.