Tangent, Cotangent, Secant, Cosecant in Terms of Sine and Cosine
If tanβ =co...
Question
If tanβ=cosθtanα, then prove that sin(α−β)=tan2(θ/2)sin(α+β)
Open in App
Solution
The given relation is tanα/tanβ=1/cosθ Apply componendo and dividendo. Then tanα−tanβtanα+tanβ=1−cosθ1+cosθ or sin(α−β)sin(α+β)=2sin2(θ/2)2cos2(θ/2)=tan2θ2 etc