wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanβ=nsinαcosα1ncos2α then, tan(α+β) is equal to

A
(n1)tanα
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(n+1)tanα
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1n+1tanα
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1n1tanα
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 1n1tanα
tanβ=n.sinαcosα1ncos2α

tan(α+β)=tanα+tanβ1tanα.tanβ

=tanα+n.sinαcosα1ncos2α1(tanα.n.sinαcosα1ncosα)


=sinαcosα+n.sinαcosα1ncos2α1(sinαcosα.nsinαcosα1ncos2α)

=sinα(1ncos2α)+nsinα.cos2αcosα(1ncos2α)1ncos2αnsin2α(1ncos2α)

=sinαn.sinαcos2α+nsinα.cos2αcosα.(1ncos2α)×(1ncos2α)1n(cos2+sin2α)

=tanα1n(1)

=tanα1n

=tanα(n1)

=1n1.tanα

tan(α+β)=1n1tanα

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon