wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanβ=nsinαcosα1nsin2α, show that tan(αβ)=(1n)tanα.

Open in App
Solution

tanβ=nsinαcosα1nsin2αtan(αβ)=(1n)tanαLHS=tan(αβ)=tanαtanβ1+tanαtanβ=tanαnsinαcosα1nsin2α1+tanαnsinαcosα1nsin2α=tanαnsinαcosα1nsin2α1+nsin2α1nsin2α=tanα(1nsin2α)nsinαcosα1nsin2α+nsin2α=tanαntanαsin2αnsinαcosα=tanαntanα(sin2α+cos2α)=tan(1n)=RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon