tanβ=tanα+tany1+tanαtany
=sinαcosα+sinycosy1+sinαcosα⋅sinycosy
=sin(α+y)cos(α−y)
Now sin2β=2tanβ1+tan2β
=2⎡⎢ ⎢ ⎢ ⎢ ⎢⎣sin(α+y)cos(α−y)1+sin2(α+y)cos2(α−y)⎤⎥ ⎥ ⎥ ⎥ ⎥⎦
=2[sin(α+y)cos(α−y)(cosαcosy+sinαsiny)2+(sinαcosy+cosαsiny)2]
=2⎡⎢ ⎢ ⎢ ⎢ ⎢⎣(sinαcosy+cosαsiny)(cosαcosy+sinαsiny)cos2αcos2y+sin2αsin2y+2sinαcosαcosysiny+sin2αcos2y+cos2αsin2y+2cosαcosysinαsiny⎤⎥ ⎥ ⎥ ⎥ ⎥⎦
=2[sinαcosαcos2y+sin2αcosysiny+cos2αsinycosy+sin2ycosαsinαcos2y+sin2y+4sinαcosαcosysiny]
=2[sinαcosα+sinycosy1+sin2αsin2y]
=sin2α+sin2y1+sin2αsin2y=RHS.
Hence LHS=RHS proof