If tanβ=cosθtanα then tan2θ2=?
sinα+βsinα-β
cosα-βcosα+β
sinα-βsinα+β
cosα+βcosα-β
Explanation for the correct option
Given that tanβ=cosθtanα
We know that tan2θ2=sin2θ2cos2θ2
Multiplying numerator and denominator by 2, we get,
tan2θ2=2sin2θ22cos2θ2=1-cosθ1+cosθ∵2sin2A=1-cos2A;2cos2A=1+cos2A=1-tanβtanα1+tanβtanα∵cosθ=tanβtanα=tanα-tanβtanα+tanβ=sinαcosα-sinβcosβsinαcosα+sinβcosβ∵tanθ=sinθcosθ=sinαcosβ-cosαsinβsinαcosβ+cosαsinβ⇒tan2θ2=sinα-βsinα+β
Hence the correct option is option(C) i.e. sinα-βsinα+β
Let [k] denotes the greatest integer less than or equal to k. Then the number of positive integral solutions of the equation [x[π2]]=⎡⎢ ⎢⎣x[1112]⎤⎥ ⎥⎦ is