If tanθ2=√(1−e1+e)tanϕ2, prove that cosϕ=cosθ−e1−ecosθ
Open in App
Solution
We know that cosA=1−tan2(A/2)1+tan2(A/2) ∴cosϕ=1−tan2(ϕ/2)1+tan2(ϕ/2)=1−{(1+e)/(1−e)}tan2(θ/2)1+{(1+e)/(1−e)}tan2(θ/2)={1−tan2(θ/2)}−e{1+tan2(θ/2)}{1+tan2(θ/2)}−e{1−tan2(θ/2)} from the given relation ∴cosϕcosθ−e1−ecosθ