The correct option is B 3π2
tan(cotx)=cot(tanx)
⇒tan(cotx)=tan(π2−tanx)
⇒cotx=nπ+π2−tanx,n∈Z
⇒cotx+tanx=nπ+π2
⇒cotx+tanx=(2n+1)π2
So, positive values of tanx+cotx are {π2,3π2,...}
We know that for positive numbers a,b
a+b≥2√ab
tanx+cotx≥2√tanx⋅cotx⇒tanx+cotx≥2
As π2<2, so the least positive value of cotx+tanx is 3π2