If tanα2,tanβ2 are the roots of 8x2−26x+15=0, then the value of cos(α+β) is
A
627725
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
547715
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−547715
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−627725
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D−627725 tanα2,tanβ2 are the roots of 8x2−26x+15=0
Sum and product of roots, tanα2+tanβ2=268=134tanα2⋅tanβ2=158tan(α2+β2)=tanα2+tanβ21−tanα2⋅tanβ2=1341−158=−267∵cosθ=1−tan2θ/21+tan2θ/2cos(α+β)=1−tan2(α2+β2)1+tan2(α2+β2)=1−(−267)21+(−267)2=−627725