If tanθ2=cosecθ−sinθ, then
Simplifying, we get
sinθ2cosθ2=1−sin2θsinθ
sinθ2cosθ2=cos2(θ)2sinθ2.cosθ2
2sin2θ2=cos2θ
2sin2θ2=(1−2sin2θ2)2
Let, 2sin2θ2=t
⟹t=(1−t)2
⟹t=t2−2t+1
⟹t2−3t+1=0
⟹t=3±√9−42
⟹t=3±√52
Now |sinθ|≤1
⟹t=3−√52
Or
sin2θ2=3−√54
⟹2(3−√58)=2sin2(180)
Hence, option A is correct.
cos2θ2=1−sin2θ2=1+√54
Option D
cos2θ+2cosθ−1=0
−2sin2θ+2cosθ=0
=−2+2cos2θ+2cosθ=0
=−1+cos2θ+cosθ=0
cos2θ=1−cosθ=2sin2θ2 which is true (as proven in the first part)
Hence, option A and D are correct.