wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan θ2=1e1+e. tan α2, then cos α =


A

1e cos (cos θ+e)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

1+e cos θcos θe

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

1e cos θcos θe

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

cos θe1e cos θ

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

cos θe1e cos θ


Given: tan θ2=1e1+e. tan α2 tan θ2tan α2=1e1+e

Squaring both sides, we get,

tan2θ2tan2α2=1e1+e tan2 α2 (1e)=tan2 θ2(1+e) sin2α2cos2α2(1e)=sin2θ2cos2θ2(1+e) 12(1cos α)12(1+cos α)(1e)

=12(1cos θ)12(1+cosθ)(1+e) (1cos α)(1+cosθ)(1e)=(1+cos α)(1cos α)(1+e) (1+cos θ)(1e)cos α(1+cos θ)(1e)=(1cos θ)(1+e)+cos α(1cos θ)(1+e) cos α (1+cos θ)(1e)(1cos θ)(1+e)=(1+cos θ)(1e)(1cos θ)(1+e)

cos α=2 cos θ2e22 cos θ=cos θe1e cos θ


flag
Suggest Corrections
thumbs-up
73
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon