If tan x2=mn, then write the value of m sin x + n cos x.
We have,
tanx2=mn⇒ sin x2cos x2=mn⇒ sinx2=mk, and cos x2=nk (say)
Now,
m sin x + n cos x
=m.2 sin x2. cos x2+n (cos2 x2−sin2 x2)=2m. mk. nk+n (n2k2−m2k2)=2m2 k2 n+nk2(n2−m2)=nk2 (2m2+n2−m2)=nk2 (m2+n2)=n (m2k2+n2k2)=n(sin2x2+cos2x2)
=n