Consider the given trigonometric value
tan(A−B)=1√3,tan(A+B)=√3
tan(A−B)=tanπ6,tan(A+B)=tanπ3
A−B=π6....(1),A+B=π3.......(2)
From equation 1st and 2nd we get,
2A=π3+π6=3π6=π6
A=π12
Put the value of A in equation 1st we get.
π12−B=π6
B=π12+π6=3π12=π4
Hence,A=π12,B=π4 are the required answer ..