We have,
tan[π4+θ]+tan[π4−θ]=α ............(1)
On squaring both sides, we get
[tan[π4+θ]+tan[π4−θ]]2=α2
tan2[π4+θ]+tan2[π4−θ]+2tan[π4+θ]tan[π4−θ]=α2
Since,
tan[π4+θ]tan[π4−θ]=1
Therefore,
tan2[π4+θ]+tan2[π4−θ]+2=α2
tan2[π4+θ]+tan2[π4−θ]=α2−2 ...........(2)
Since,
tan3[π4+θ]+tan3[π4−θ]
⇒(tan[π4+θ]+tan[π4−θ])(tan2[π4+θ]+tan2[π4−θ]−tan[π4+θ]tan[π4−θ])
From equation (1) and (2), we get
⇒(α)(α2−2−1)
⇒α(α2−3)
Hence, this is the answer.