wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan[π4+θ]+tan[π4θ]=α then tan3[π4+θ]+tan3[π4θ]=

Open in App
Solution

We have,
tan[π4+θ]+tan[π4θ]=α ............(1)

On squaring both sides, we get
[tan[π4+θ]+tan[π4θ]]2=α2

tan2[π4+θ]+tan2[π4θ]+2tan[π4+θ]tan[π4θ]=α2

Since,
tan[π4+θ]tan[π4θ]=1

Therefore,
tan2[π4+θ]+tan2[π4θ]+2=α2

tan2[π4+θ]+tan2[π4θ]=α22 ...........(2)

Since,
tan3[π4+θ]+tan3[π4θ]

(tan[π4+θ]+tan[π4θ])(tan2[π4+θ]+tan2[π4θ]tan[π4+θ]tan[π4θ])

From equation (1) and (2), we get
(α)(α221)

α(α23)

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon