If tan(x2)=cosecx−sinx, then the value of tan2(x2) is
A
2−√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2+√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−2−√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−2+√5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D−2+√5 sinx=2tanx/21+tan2x/2 Let tan(x2)=y ∴tan(x2)=cosecx−sinx=1sinx−sinx ⇒y=1+y22y−2y1+y2 ⇒2y2+2y4=1+y4−2y2=0 1+y4−2y2−2y4−2y2=0 ⇒y2=−4±√16+42 =−2±√5 y2=−2+√5;−2−√5 But y2≠−2−√5 y2=tan2(x/2)=−2+√5