We know that tan(π4+α)=1+tanα1−tanα=cosα+sinαcosα−sinα
∴tan2(π4+α)=1+sin2α1−sin2α∵2sinαcosα=sin2α
Squaring the given relation, we have to prove that
1+siny1−siny=(1+sinx)3(1−sinx)3.Apply comp. and divi.
2siny2=2(3sinx+sin3x)2(1+3sin2x)
∴siny=sinx(3+sin2x)1+3sin2x