wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan(π4+x)+tan(π4x)=a, then tan2(π4+x)+tan2(π4x)=

A
a2+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a2+2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a22
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C a22
tan(π4+x)+tan(π4x)=a
Square both sides,
[tan(π4+x)+tan(π4x)]2=a2
tan2(π4+x)+tan2(π4x)+2tan(π4+x)tan(π4x)=a2
tan2(π4+x)+tan2(π4x)=a22tan(π4+x)tan(π4x)(1)
tan(A+B)=tanA+tanB1tanAtanB
tan(AB)=tanAtanB1+tanAtanB
So, tanπ/4=1
So, tan(π4+x)=1+tanx1tanx
tan(π4x)=1tanx1+tanx
tan(π4+x)tan(π4x)=1
So, tan2(π4+x)+tan2(π4x)=a22(1)=a22.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon