If tan(x2)=cosecx−sinx, then tan2(x2) is equal to
tan(x2)=cosecx−sinx
The given relation can be written as
tan(x2)=1−sin2xsinx
tan(x2)=cos2xsinx
⇒2sin2(x2)=[cos2(x2)−sin2(x2)]2
⇒2tan2(x2)sec2(x2)=[1−tan2(x2)]2
⇒2tan2(x2)[1+tan2(x2)]=[1−tan2(x2)]2
Put y=tan2(x2)
⇒2y(1+y)=(1−y)2
⇒y2+4y−1=0
⇒y=−4±√16+42=−2+√5
Since y>0, we get
y=√5−2=(√5−2)2√5−2⋅2+√52+√5
=(9−4√5)(2+√5).