If tan (π4+θ)+tan(π4−θ)=λ sec 2θ, then
2
Given:
tan(π4+θ)+tan (π4−θ)=λ sec 2θ⇒ tan π4+tan θ1−tan π4×tan θ+tan π4−tan θ1+tan π4×tan θ=λ sec 2 θ⇒ 1+tan θ1−tan θ+1−tan θ1+tan θ=λ sec 2θ⇒ (1+tan θ)2(1−tan θ)2(1−tan θ)+(1+tan θ)=λ sec 2θ
⇒ 2(1+tan2 θ)1−tan2 θ=λ sec 2θ⇒ 2 sec2θ1−tan2θ=λ sec 2θ⇒ 2cos2 θ(1−tan2θ)=λ sec 2θ⇒ 2cos2 θ(1−sin2 θcos2 θ)=λ sec 2θ⇒ 2cos2 θ−sin2 θ=λ sec 2θ
⇒ 2cos 2θ=λ sec 2θ⇒ 2 sec 2θ=λ sec 2θ⇒ 2=λ∴ λ=2