The correct options are
A e2ϕ=cotα2
B 2θ=nπ+π2+α
We have tan(θ+iϕ)=tanα+isecα
and tan(θ−iϕ)=tanα−isecα
Now, tan(θ+iϕ+θ−iϕ)=tan2θ
=tan(θ+iϕ)+tan(θ−iϕ)1−(tanα+isecα)(tanα−isecα)
tanα+isecα+tanα−isecα1−(tanα+isecα)(tanα−isecα)
=2tanα1−(tan2α−i2sec2α)
As i2=−1
⇒2tanα1−tan2α−sec2α
We know that 1−sec2α=−tan2α
⇒2tanα−2tan2α
−cotα
We have tan2θ=−cotα
⇒tan2θ=tan(π2+α)
⇒2θ=nπ+π2+α
Now, tan2iϕ=tan[(θ+iϕ)−(θ−iϕ)]
=tan(θ+iϕ)+tan(θ−iϕ)1+tan(θ+iϕ)tan(θ−iϕ)
=tanα+isecα−tanα+isecα1+(tanα+isecα)(tanα−isecα)
=2isecα1+tan2α−i2sec2α
=2isecα2sec2α
=isecα
=icosα
⇒tanh2ϕ=cosα
2ϕ=tanh−1(cosα)
2ϕ=12log(1+cosα1−cosα)
2ϕ=12log⎛⎝2cos2α22sin2α2⎞⎠
⇒2ϕ=12logcot2α2
or 2ϕ=22logcotα2
or 2ϕ=logcotα2
or e2ϕ=cotα2