wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan p θ-tan q θ=0, then the values of θ form a series in
(a) AP
(b) GP
(c) HP
(d) none of these

Open in App
Solution

(a) AP
Given:
tanpθ - tanqθ = 0
tanpθ = tanqθ sinpθcospθ = sinqθcosqθ sinpθ cosqθ = sinqθ cospθ12sinp + q2θ + sinp - q2θ = 12sinq + p2θ + sinq - p2θ

Now,
sin A cos B = 12sinA + B2 + sinA - B2
sin p - q2θ = sin q - p2θ sin p - q2θ = - sin p - q2θ 2 sin p - q2θ = 0 sin p - q2θ = 0
p - q2θ = nπ, n Z θ = 2(p - q), n Z

Now, on putting the value of n, we get:
n = 1, θ = 2π(p- q)= a1

n = 2, θ = 4π(p - q) = a2

n = 3, θ = 6π(p - q) = a3

n = 4, θ = 8π(p - q) = a4
And so on.


Also,

d =a2 - a1 = 4π(p - q) - 2π(p - q) = 2π(p - q)d = a3 - a2 = 6π(p - q) - 4π(p - q) = 2π(p - q)d = a4 - a3 = 8π(p - q) - 6π( p - q) = 2π(p - q)
And so on.

Thus, θ forms a series in AP.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon