If tan p θ−tan q θ=0,then the values of θ form a series in
AP
Given:tap pθ−tan qθ=0⇒tap pθ−tan qθ=0⇒sin pθcos pθ=sin qθcos qθ⇒sin pθ cos qθ=sinqθ cos pθ=0⇒12[sin(p+q2)θ+sin (p−q2)θ]= 12[sin(q+p2)θ+sin (q−p2)θ]Now,sin A cos B= 12[sin(A+B2)+sin (A−B2)]⇒sin(p−q2)θ= sin (q−p2)θ ⇒sin(p−q2)θ=−sin(p−q2)θ⇒2 sin (p−q2)θ=0⇒sin(p−q2)θ=0⇒(p−q2)θ=nπ,n∈ ZNow,on putting the value of n,we getn=1, θ=2π(p−q)=a1n=2, θ=4π(p−q)=a2n=3, θ=6π(p−q)=a3n=4, θ=8π(p−q)=a4And so on.Also,d=a2−a1=4π(p−q)−2π(p−q)=2π(p−q)d=a3−a2=6π(p−q)−4π(p−q)=2π(p−q)d=a4−a3=8π(p−q)−6π(p−q)=2π(p−q)And so on.Thus,θ forms a series in AP.