If tan(πcosθ)=cot(πsinθ), 0<θ<3π4, then sin(θ+π4)=
If sin x=−12, 3π2<x<2π, find the values of sinx2, cosx2 and tan x2.
Or
If tan (π cos θ)=cot (π sin θ), prove that cos(θ−π4)=±12√2.