wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan(πcosθ)=cot(πsinθ), prove that cos(θπ4)=±122

Open in App
Solution

tan(πcosθ)=cot(πsinθ)

sin(πcosθ)cos(πcosθ)=cos(πsinθ)sin(πsinθ)

sin(πcosθ)sin(πsinθ)=cos(πcosθ)cos(πsinθ)

cos(πcosθ)cos(πsinθ)sin(πcosθ)sin(πsinθ)=0

cos(πcosθ+πsinθ)=0

πcosθ+πsinθ=±π2

cos(±π2)=0

cosθ+sinθ=±12

Multiply both sides by 12

12cosθ+12sinθ=±122

cosπ4cosθ+sinπ4sinθ=±122

cos(θπ/4)=±122

Hence Proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Euler's Representation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon