If tan(πcosθ)=cot(πsinθ) then 19208cos2(θ−π/4) is equal to
Open in App
Solution
tan(πcosθ)=tan(π2−πsinθ) ⇒πcosθ=nπ+π2−πsinθ(n∈I) ⇒π(sinθ+cosθ)=(2n+1)π2 ⇒sinθ+cosθ=2n+12 ⇒cos(π4−θ)=2n+12√2 Since −1≤cos(π4−θ)≤1 ⇒−1≤2n+12√2≤1 ⇒n=0,−1 as n is an integer ⇒cos(π4−θ)=±(12√2) ⇒8cos2(π/4−θ)=1 ⇒19208cos2(π/4−θ)=2401