If tan(πcosx)=cot(πsinx), then the absolute value of 4√2cos(x−π4) is
Open in App
Solution
tan(πcosx)=cot(πsinx)⇒tan(πcosx)=tan(π/2−πsinx)⇒πcosx=nπ+π/2−πsinx⇒cosx+sinx=2n+12,n∈Z⇒1√2cosx+1√2sinx=2n+12√2⇒cos(x−π4)=±12√2(∵cosx∈[−1,1]) So, absolute value of 4√2cos(x−π4)=2