wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan px-tan qx=0, then the values of θ form a series in
(a) AP
(b) GP
(c) HP
(d) none of these

Open in App
Solution

(a) AP
Given:
tanpx - tanqx = 0
tanpx = tanqx sinpxcospx = sinqxcosqx sinpx cosqx = sinqx cospx12sinp + q2x + sinp - q2x = 12sinq + p2x + sinq - p2x

Now,
sin A cos B = 12sinA + B2 + sinA - B2
sin p - q2x = sin q - p2x sin p - q2x = - sin p - q2x 2 sin p - q2x = 0 sin p - q2x = 0
p - q2x = nπ, n Z x = 2(p - q), n Z

Now, on putting the value of n, we get:
n = 1, x = 2π(p- q)= a1

n = 2, x = 4π(p - q) = a2

n = 3, x = 6π(p - q) = a3

n = 4, x = 8π(p - q) = a4
And so on.
Also,
d =a2 - a1 = 4π(p - q) - 2π(p - q) = 2π(p - q)d = a3 - a2 = 6π(p - q) - 4π(p - q) = 2π(p - q)d = a4 - a3 = 8π(p - q) - 6π( p - q) = 2π(p - q)
And so on.
Thus, x forms a series in AP.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon