wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanθ=sinα-cosαsinα+cosα, then show that sinα+cosα=2cosθ. [NCERT EXEMPLER]

Open in App
Solution

tanθ=sinα-cosαsinα+cosα

Dividing numerator and denominator on the RHS by cosα, we get

tanθ=sinαcosα-1sinαcosα+1tanθ=tanα-tanπ41+tanα tanπ4tanθ=tanα-π4θ=α-π4Or α=π4+θ

Now,

sinα+cosα=sinπ4+θ+cosπ4+θ=sinπ4cosθ+cosπ4sinθ+cosπ4cosθ-sinπ4sinθ=12cosθ+12sinθ+12cosθ-12sinθ=22cosθ=2cosθ

sinα+cosα=2cosθ

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon