wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (tan θ + sin θ) = m and (tan θ − sin θ) = n, prove that (m2 − n2)2 = 16mn.

Open in App
Solution

We have (tanθ+sinθ)=m and (tanθsinθ)=nNow, LHS=(m2n2)2 =[(tanθ+sinθ)2(tanθsinθ)2]2 =[(tan2θ+sin2θ+2tanθsinθ)(tan2θ+sin2θ2tanθsinθ)]2 =[(tan2θ+sin2θ+2tanθsinθtan2θsin2θ+2tanθsinθ)]2 =(4tanθsinθ)2 =16tan2θsin2θ =16sin2θcos2θsin2θ =16(1cos2θ)sin2θcos2θ =16[tan2θ(1cos2θ)] =16(tan2θtan2θcos2θ) =16(tan2θsin2θcos2θ×cos2θ) =16(tan2θsin2θ) =16(tanθ+sinθ)(tanθsinθ) =16mn [(tanθ+sinθ)(tanθsinθ)=mn](m2n2)(m2n2)2=16mn

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon