wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan θ+sin θ = m and tan θ -sin θ =n, show that m2+n2 = 4mn.

Open in App
Solution

DISCLAIMER: In the question, there is a misprint. The LHS should be m2-n2 instead of m2+n2.

Given: tan θ+sinθ = m and tan θ-sinθ = nLHS: m2 -n2= tanθ+sinθ2-tanθ-sinθ2= tan2θ+sin2θ+2 tan θ sin θ- tan2θ-sin2θ+2 tan θ sin θ= 4 tanθ sin θRHS: 4mn =4 tanθ+sinθtanθ-sinθ= 4tan2θ-sin2θ= 4sin2θ-sin2θcos2θcos2θ= 4sinθcosθsin2θ1= 4 tan θ sin θ LHS = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon