If tan2(θ)-(1+3)tan(θ)+3=0, then the general value of θ is
nπ+π4,nπ+π3
nπ-π4,nπ+π3
nπ+π4,nπ-π3
nπ-π4,nπ-π3
Explanation for correct option
Given: tan2(θ)-(1+3)tan(θ)+3=0
⇒tan2(θ)-tan(θ)-3tan(θ)+3=0⇒tan(θ)tan(θ)-1-3tan(θ)-1=0⇒tan(θ)-3tan(θ)-1=0∴tan(θ)-3=0|tan(θ)-1=0⇒tan(θ)=3|tan(θ)=1⇒θ=nπ+π3|θ=nπ+π4
Hence, option A is correct.
If tan3θ-1tan3θ+1=3, then the general value of θ is
If cosθ+cos2θ+cos3θ=0, then the general value of θ is:
If sin2θ-2cosθ+14=0, then the general value of θ is
If tan2θtanθ=1, then the general value of θ is
If sin2θ=14, then the most general value of θ is