If tan θ1, tan θ2, tan θ3 are the real roots of x3−(a+1)x2+(b−a)x−b=0 where θ1, θ2, θ3 are acute then θ1+θ2+θ3=
π4
tan θ1+tan θ2+tan θ3=a+1, tan θ1 tan θ2 tan θ3=b tan θ1tan θ2+tan θ2tan θ3+tan θ3tan θ1=b−a
Now tan (θ1+θ2+θ3)=tan θ1+tan θ2+tan θ3−tan θ1 tan θ2 tan θ31−tan θ1 tan θ2−tan θ2 tan θ3−tan θ3 tan θ1=a+1−b1−(b−a)=a−b+11−b+a=1∴ θ1+θ2+θ3=π4