If tanθ1,tanθ2,tanθ3 are the real roots of the x3−(a+1)x2+(b−a)x−b=0, where θ1+θ2+θ3∈(0,π), then θ1+θ2+θ3 is equal to
If tan θ1, tan θ2, tan θ3 are the real roots of x3−(a+1)x2+(b−a)x−b=0 where θ1, θ2, θ3 are acute then θ1+θ2+θ3=