If tanθ1,tanθ2,tanθ3,tanθ4 are the roots of the equation x4−x3sin2β+x2cos2β−xcosβ−sinβ=0, then prove that tan(θ1+θ2+θ3+θ4)=cotβ
Open in App
Solution
tan(θ1+θ2+θ3+θ4)=S1−S31−S2+S4 where S1=sin2β,S2=cos2β,S3=cosβ,S4=−sinβ ∴tan(θ1+θ2+θ3+θ4)=sin2β−cos2β1−cos2β−sinβ=cosβ(2sinβ−1)2sin2β−sinβ=cosβsinβ=cotβ