tanθ=(−512)=−veandθisnotinsecondquadrantthenθisinforthquadrantandhencesinθ=(−513)andcosθ=(1213)now(sin(3600−θ)−cotθ−sec(2700+θ)+cosec(−θ))=(sin(−θ)−cotθ−cosecθ−cosecθ)=(−sinθ−cotθ−2cosecθ)=(sinθ+cotθ2cosecθ)=((−513)−(125)2×(−135))=(25+15613×5×2×13)×5=(181338)=RHS