If tanθ+cotθ=2, then sinθ=
If sinθ=35,tanθ=12andπ2<θ<π<=3π2, find the value of 8 tanθ−√5secϕ.
Prove the following
1.(1−sin2A)sec2A=1
2.sec4θ−sec2θ=tan4θ+tan2
3.(secθ−tanθ)2=1−sinθ1+sinθ
4.tanθ+secθ−1tanθ−secθ+=1+sinθcosθ
If the equation sinθ=−12 and tanθ=1√3 then the most common general values of θ is