If tan(θ)-cot(θ)=a and sin(θ)+cos(θ)=b, then b2-12a2+4 is equal to
2
±4
-4
4
Explanation for the correct option
Given: tan(θ)-cot(θ)=a and sin(θ)+cos(θ)=b
∴b2-12a2+4=sin(θ)+cos(θ)2-12tan(θ)-cotθ2+4⇒b2-12a2+4=sin2(θ)+cos2(θ)+2sin(θ)cos(θ)-12sin(θ)cos(θ)-cosθsin(θ)2+4⇒b2-12a2+4=1+2sin(θ)cos(θ)-12sin2(θ)-cos2(θ)sin(θ)cos(θ)2+4⇒b2-12a2+4=4sin2(θ)cos2(θ)sin4(θ)+cos4(θ)-2sin2(θ)cos2(θ)+4sin2(θ)cos2(θ)sin2(θ)cos2(θ)⇒b2-12a2+4=4sin4(θ)+cos4(θ)+2sin2(θ)cos2(θ)⇒b2-12a2+4=4sin2(θ)+cos2(θ)2⇒b2-12a2+4=412∵sin2(θ)+cos2(θ)=1⇒b2-12a2+4=4
Hence, option D is correct.