The correct option is B 4
Giventheequation........sinθ+cosθ=bsquaringbothside:⇒sin2θ+cos2θ+2sinθcosθ=b2∣∣∣sin2θ+cos2θ=12sinθcosθ=sin2θ⇒sin2θ=b2−1−−−−−−−−(i)Now,tanθ−cotθ=a⇒sinθcosθ−cosθsinθ=a⇒sin2θ−cos2θsinθcosθ=aNow,multiplyby2:⇒−2(cos2θ−sin2θ)2sinθcosθ=a⇒−2cos2θsin2θ=aNow,squaringbothside:⇒(−2cos2θsin2θ)2=a2⇒(4cos22θsin22θ)=a2Again,adding4bothside:⇒4+4cos22θsin22θ=a2+4⇒4[sin22θ+cos22θsin22θ]=a2+4⇒4sin22θ=a2+4−−−−−−−−−−(ii)Now,findthevalueof:wehave,⇒(b2−1)2(a2+4)=(sin22θ)(4sin22θ)∴(b2−1)2(a2+4)=4sothatthecorrectoptionisD.