Given that tanθ=2021. Let us consider the right triangle ABC (see fig), with AB=21 and BC=20. By Pythagoras theorem, we have AC2=AB2+BC2=202+212=400+441=841. ∴AC=√841=29. sinθ=BCAC=2029,cosθ=ABAC=2129 1−sinθ+cosθ=1−2029+2129=29−20+2129=3029 1+sinθ+cosθ=1+2029+2129=29+20+2129=7029 1−sinθ+cosθ1+sinθ+cosθ=30297029=3029×2970=3070=37