wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanθ=2021, show that 1sinθ+cosθ1+sinθ+cosθ=37

Open in App
Solution

Given,

tanA=2021

We know that,

tanA=oppositeSideadjacentSide


From Pythagoras theorem,

(Hypotenuse)2=(oppositeSide)2+(adjacentSide)2

(Hypotenuse)2=202+212

(Hypotenuse)2=400+441=841

(Hypotenuse)=29


cosA=AdjacentSideHypotenuse=2129

sinA=OppositeSideAdjacentSide=2029

Therefore,
L..H.S

=1sinθ+cosθ1+sinθ+cosθ

=1(2029)+(2129)1+(2029)+(2129)

=2920+2129+20+21

=3070

=37=R.H.S

1sinθ+cosθ1+sinθ+cosθ=37

Hence proved

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of a Right Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon